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Abstract—Deliberate practice is important in many areas, 

including learning to program computers. However, beliefs about 

the nature of personal traits, known as mindsets, can have a 

profound impact on such practice. Previous research has shown 

that those with a fixed mindset believe their traits cannot change 

and tend to reduce their level of practice when they encounter 

difficulty. In contrast, those with the growth mindset believe their 

traits are flexible and tend to maintain regular practice despite 

the level of difficulty. However, focusing on mindset as a single 

construct focused on intelligence may not be appropriate in the 

field of computer programming. Exploring this notion, a  

self-belief survey was distributed to undergraduate software 

engineering students. It was revealed that beliefs about 

intelligence and programming aptitude formed two distinct 

constructs. Furthermore, the mindset for programming aptitude 

had greater utility in predicting software development practice 

and a follow-up survey showed that it became more fixed 

throughout instruction. Thus, educators should consider the role 

of programming-specific beliefs in the design and evaluation of 

introductory courses in software engineering. Particularly, the 

need to situate and contextualize the growth messages that 

motivate students who experience early setbacks. 

 

Index Terms—Self-Theories, Implicit Beliefs, Programming, 

Practice, Domain-Specific, Mindsets, Dweck. 

I. INTRODUCTION 

ANY struggle to learn programming [18]. Introductory 

courses, in particular, have a history of poor outcomes at 

the tertiary level. A recent study showed that many learners 

fail to grasp the fundamentals after such a course [16]. Thus, it 

is important to explore how students learn successfully. 

 Addressing the cognitive-affective barriers which reduce 

the deliberate practice that students engage in offers one line 

of enquiry [30]. This is important because maintaining an 

ongoing, reflexive, and self-regulated learning process is 

critical to the acquisition of expertise [13]. It has been said 

that at least ten years of such practice is needed to develop 
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substantial proficiency in software engineering [13, 34].  

Consequently, educators often situate high levels of 

scaffolding and formative feedback within the introductory 

programming lab [19]. Despite such efforts, however, many 

beginners do not practice regularly. Often, such students claim 

they experience apprehension and discomfort when they 

attempt to do so [28]. These emotional responses can prompt 

students to stop working on difficult assignments [22] and it 

has been reported that such affective factors worsen over a 

course of programming instruction [24].  

Nevertheless, not all students react this way when they 

encounter problems. For example, some perceive compilation 

errors as a challenge to be overcome rather than as an 

indication of failure [26]. Among the potential reasons for 

such conflicting perspectives is the different ways in which 

students reflect upon their learning [21, 22]. These differences 

may correspond to students' self-beliefs [26], presenting an 

opportunity for educators to nurture particular mindsets. 

II. MINDSETS: ARE THEY DOMAIN-SPECIFIC? 

According to the self-theories proposed by Dweck [12], 

individuals hold beliefs about the nature of their personal 

traits, referred to as their mindset, which can be classified into 

one of two core beliefs. Those with the fixed mindset believe 

their traits are an entity that cannot be changed. Conversely, 

those with the growth mindset believe their traits are flexible 

and can be enhanced through effort.  

These beliefs have implications for the way that students 

engage in self-regulated learning. This is because the learning 

strategies that students apply depend on whether they believe 

such strategies are necessary for learning and are effective at 

addressing problems [11]. As a result, those with a fixed 

mindset tend to adopt a helpless response when they encounter 

difficulty. In contrast, those with a growth mindset tend to 

persevere, adopting a mastery-orientated strategy [8, 35].  

In order to nurture a growth mindset, educators embed 

growth messages such as "the brain is like a muscle, it 

develops through exercise" into their teaching practice. 

However, this advice is often framed in terms of intelligence 

[21, 26, 32]. Do students generalize such messages? The 

human mind can be conceived in terms of multiple 

intelligences [14] and self-theories have been adapted for 

areas as varied as: shyness [2]; math-ability [15]; and 
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willpower [20]. Therefore, it is conceivable that students do 

not associate their programming ability with a general sense of 

intelligence, but rather to a sense of programming aptitude. 

Programming has been described as a discipline that 

presents “radical novelties” to beginners [9]. This is because 

new students often need to adapt their way of thinking to 

accommodate the abstract and intangible concepts that are 

applied in program creation [5, 30] as such thinking is seldom 

developed prior to the first programming course [18]. Hence, 

the discipline can feel distinct, potentially promoting a 

separate mindset for programming aptitude.  

This has implications for the design and evaluation of 

teaching practice. A “saying is believing” exercise required 

students to “describe a time when (they) learned something 

other than programming (...) but with practice and 

perseverance (they) were able to succeed” [31, p. 176]. 

However, this was shown to lack practical impact. Perhaps 

this may be the case because students can hold a separate 

mindset for programming. In such cases, reflecting on past 

success in another discipline may not succeed. 

Another intervention attempted a rich combination of 

mindset-informed training and feedback practices [7]. This 

was shown to have some success, but only for students who 

also received a programming-specific crib-sheet which 

contextually reinforced the growth belief. This could indicate 

an advantage in applying educational practices that are 

designed to change a more specific mindset, as opposed to a 

general mindset for intelligence [c.f. 35]. However, only a 

single measure was used in the study. 

Following this line of reasoning, prior work [29] has shown 

that an adapted mindset scale formed two distinct subscales: 

items about programming aptitude and items about general 

intelligence. However, a significant correlation was found 

between scores on these subscales, raising several research 

questions (RQs) about the implications of separate mindsets 

for teaching practice in the software engineering context: 

RQ1. Can students have a mindset for programming 

aptitude that is substantially different to their 

mindset for general intelligence? 

RQ2. Does the mindset for programming aptitude have 

more utility for predicting programming practice 

compared to the mindset for general intelligence? 

RQ3. Does the mindset for programming aptitude change 

differently to the mindset for general intelligence 

over a period of programming instruction? 

III. HYPOTHESES 

To explore the relative merits of modeling separate 

mindsets, there is a need to establish a clear difference 

between them. The first research question examines two 

hypotheses: firstly, that a model with programming aptitude 

mindset and intelligence mindset as two distinct, but slightly 

correlated factors (H1), demonstrates good fit to observed data 

[29]; secondly, for the notion of separate mindsets to have  

utility for educators, the classification of each mindset (being 

either fixed or growth) should not have a high level of 

consistency (H2). The second research question then explores 

the impact of each mindset on programming practice behavior. 

It is hypothesized that both programming aptitude mindset and 

mindset for intelligence (H3 and H4) are related to 

programming practice behavior. Given their relation to 

resilience [8, 35], each relationship will be moderated by early 

performance (H5 and H6), such that those achieving high 

grades will not be as strongly influenced by their mindset. 

However, each will have a different level of explanatory 

power on programming practice behavior (H7). 

    
 
Fig. 1. The Impacts of Mindset for Programming Aptitude (APT) and 

Mindset for Intelligence (INTEL) on Programming Practice Behavior 

(PRACT), as moderated by Early Programming Performance (GRADE) 

(Left), Alongside Change in Each Mindset Across an 8-Week Period of 

Instruction (Right). 
 

The third research question investigates change in mindset 

over time. As there could be elements of programming 

instruction that induce a fixed mindset [7, 26], it is 

hypothesized that mindset towards programming aptitude will 

become more fixed over a period of programming instruction 

(H8). Mindset towards intelligence may also change (H9), but 

less so than programming aptitude (H10).   

IV. DATA COLLECTION 

A two-wave survey was conducted in 2012-13 to examine 

these hypotheses. Participants were recruited from two core 

programming modules at the authors' institution. The study 

was promoted via: pre-registered email; institutional email; 

notices on BlackBoard Learn; and through a course-related 

Facebook Group.  

The questionnaires were distributed using SurveyMonkey 

and were available for 11 days across the 8th and 16th week of 

the semester, respectively. Participation was voluntary. In 

order to identify programming assessments corresponding to 

each respondent, student identification numbers were either 

obfuscated and encoded into hyperlinks or reported. The 

sampling frame consisted of 296 first and second year 

undergraduate students on programming modules within the 

authors' institution. To be eligible, students had to be at least 

18 years of age and had to have submitted their first three lab 

assignments, the deadlines for which were prior to the date the 

survey was conducted. There were 73 students who completed 

all of the items in the first wave of the survey. Thus, the initial 

response rate was 24%. However, there was some attrition 

between the first and second wave of the survey, with only 63 

students responding to both. Thus, the attrition rate was 14%.  

H1,2 

H3,7 

H4,7 

H5 H6 

H8,10 

H9,10 
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Fig. 2. A summary of the age, gender and prior programming experience of the survey respondents. 

V. PARTICIPANT CHARACTERISTICS 

Participants were first and second year undergraduate 

students following the sequential pathway for “Computer 

Science (Software Engineering)”
1
. The descriptive statistics, 

summarized in Figure 2, show that approximately  24.3% of 

the respondents were female, while the average age was    

years (   =   .48, σ =  .4 , ma  = 3 ), with 17.6% of 

respondents being over the age of 23 at entry.  

As the response rate was low and the early programming 

scores for the sample indicated that many were per orming at 

a high merit level (   = 6.61, σ = 1.71, max = 9.00), there was 

concern about response bias. However, performance did not 

significantly differ to the cohort (   = 6.35, σ = 1.58,   

t[72] = 1.291, p = .201). Furthermore, the proportion of 

mature (age >  3) (χ
2
 = 2.647, p = .103) and female students 

(χ
2
 = 1.372, p = .241) was typical of the cohort.  

Admission to the pathway required at least 300 UCAS 

Points
2
 (University & College Admission System Points), with 

a strong preference for STEM subjects (science, technology, 

engineering, and mathematics). Prior programming experience 

was not required (44.6%). However, students without a 

relevant STEM qualification, or the required points, could opt 

to pursue a relevant foundation course (9.6%).  

In the first year, students on the pathway would attend an 

“Introductory Java Programming” module in order to learn 

object-orientated design and the fundamental constructs of the 

Java language. This was conducted through a sequence of 

laboratory-based assignments and a group project, where 

students would program robots to complete short scripted 

tasks. For example: maze navigation; obstacle avoidance; or 

communication in Morse Code.  

In the following year, students explored algorithms and data 

structures as part of an “Algorithms and their Applications” 

module. This involved the implementation and analysis of 

classic algorithms (e.g. sorting, searching, graph traversal, 

meta-heuristics) as a series of lab-based tasks. As before, this 

was paired with a group-based Android development project.  

 
1 The course description is available here: www.brunel.ac.uk/courses/undergraduate/ 

computer-science-software-engineering-bsc 
2 To convert many international qualifications and grades to UCAS Points, refer to: 

 www.ucas.com/how-it-all-works/explore-your-options/entry-requirements/tariff-tables 

VI. MEASUREMENT 

The questionnaire measured three latent variables: mindset 

for intelligence (INTEL); mindset for programming aptitude 

(APT); and programming practice behavior (PRACT). 

Common factor analysis techniques were used to generate 

these scores, rather than principle components analysis, to 

e plore how the underlying structure o  items’ shared variance 

reflected the latent variables of interest (see [1] for a 

discussion). Early programming performance (GRADE) was 

measured using the first three assignments in each module. 

A. Mindset towards Intelligence (INTEL) 

To measure mindset for intelligence, items were drawn 

from Dweck's mindset scale [12]. Five items were used, 

including three statements that endorsed the fixed belief, such 

as “my intelligence is something about me that I can't change 

very much” and two statements that endorsed the growth 

belie , such as “I can always substantially change how 

intelligent I am”. These were presented as a 7-point Likert 

Scale, ranging from strongly disagree to strongly agree. The 

order in which items were displayed was randomised 

alongside items measuring mindset for programming aptitude. 

Composite scores were generated using a regression method 

based on the factor score matrix generated by a maximum-

likelihood analysis. A high score indicated a fixed belief. 

B. Mindset towards Programming Aptitude (APT) 

 To measure mindset for programming aptitude, items were 

also drawn from Dweck's mindset scale [12]. However. these 

were adapted to the programming context. Five items were 

used, including three statements endorsing the fixed belief. 

For example: “I have a fixed level of programming aptitude, 

and not much can be done to change it”. The remaining two 

items endorsed the growth belief. For example: “I believe I am 

able to achieve a high level of programming aptitude, with 

enough practice”. The items were presented as a 7-point Likert 

scale, with responses ranging from strongly disagree to 

strongly agree. The items were presented randomly alongside 

items measuring mindset for intelligence. Composite scores 

were generated using a regression method based on a factor 

score matrix produced by a maximum-likelihood analysis. A 

high score on this scale indicates a fixed belief. 



4 

IEEE TRANSACTIONS ON EDUCATION, VOL. XX, NO. X, XXX XXXX 

 

C. Regularity of Programming Practice (PRACT) 

A self-report measure of programming practice was created 

for this survey using a 7-point and a 4-point item. These were 

presented as Guttman-type items, questioning “in a typical 

week of study I find myself writing code {during the closed-

labs / at least {1-5} day(s) a week / every day}” and “in a 

typical session I concentrate on programming for {up to 30 

minutes / at least 30 minutes / at least one hour / at least two 

hours}”. Thus, providing an indication of frequency of 

practice and the typical duration of each practice session. 

Responses to these items were parceled into a single 

composite score using principal axis factoring. Note, as a 

retrospective self-report measure, this should not be 

interpreted as actual practice. Caution should be exercised due 

to the potential for self-report biases [10]. 

D. Early Programming Performance (GRADE) 

As the core programming modules used the same 

assessment structure, early programming performance was 

measured using existing assessment data. Assignments were 

assessed as code reviews by a team of Ph.D. students covering 

the modules; typically, with good consistency (ICC = 0.73, 6 

submissions). Grades reflected the functional coherence of 

solutions, the presence of common pitfalls, and a judgment on 

quality according to a rubric. They were recorded as 1 (pass), 

2 (merit), and 3 (distinction). The results of the first three 

assessments were added together to form a composite score. 

VII. DATA ANALYSIS 

The data was analyzed using PASW 18.0.3 and AMOS 

21.0.0 for Windows. All cases were included. Cases with 

missing data were removed list-wise. All reported p-values are 

two-tailed with significance determined at the .05 level.  

A. Replication of the Two-Mindsets Factor Structure (RQ1) 

As with the previous study [29], a maximum-likelihood 

factor analysis showed that a two factor model had greater fit 

(χ
2
 = 43.094, df = 34, p = .136) than a single factor model  

(χ
2
 = 69.619, df = 35, p = .000). Furthermore, the items used to 

measure mindset towards intelligence (α= .73) and mindset 

towards programming aptitude (α = .61) demonstrated  

adequate reliability. Fit indices are summarized in Table 1:  
 

TABLE 1. FIT INDICES & CRITERIA FOR TWO-FACTOR MODEL 

Fit Indices 1-Factor Model 2-Factor Model Adequate Fit Criteria [18] 

SRMR .108 .078 < .08 

CFI  .728 .928 > .90 

RMSEA .117 .061 < .08 

Bollen-Stein p .015 .313 > .05 

Note: SRMR: Standardized Root Mean Square Residual; CFI: Comparative Fit Index; RMSEA: Root Mean 
Square Error of Approximation; N = 73 

B. Consistency Between Different Mindsets (RQ1) 

Participants were classified using a two-step clustering 

procedure that was applied separately to APT and INTEL. 

Each showed the expected two-cluster solutions, based on 

Log-likelihood distance and Bayesian Information Criterion. 

The average silhouette coefficient was used to evaluate the 

clustering solutions. This yielded values greater than 0.7 for 

both analyses, indicating that the solutions were “good”. The 

results are shown in Table 2 below: 
 

TABLE 2. MINDSET CLASSIFICATION FOR INDIVIDUAL STUDENTS 

 
Fixed 

Intelligence 

Growth 

Intelligence 
κ p 

Fixed Programming 

Aptitude 
10 13   

Growth Programming  

Aptitude  
11 39 .220 .060 

Note: κ: Cohen's kappa; N = 73; Agreement = 67.1% 
 

The correlation between factor scores was significant  

(r = .248, p = .034). However, the level of agreement between 

each classification scheme, based on the kappa statistic, 

indicated only “fair agreement” (p = .060) [23]. It can be seen 

that 23 students were classified as fixed APT (31.5%), while 

21 students were fixed INTEL (28.7%). Inconsistency 

occurred in 24 cases (32.9%), where students held different 

beliefs for the two domains. This was most prominent for 

those with fixed APT, where 13 of the 23 cases maintained 

growth INTEL (56.5%). However, 11 of the 50 cases with a 

growth APT also had inconsistent beliefs (28.8%).  

C. Impact of Each Mindset on Practice Behavior (RQ2) 

Two linear regression analyses compared the independent 

impact of APT and INTEL on PRACT. Assumptions of 

residual normality, independence, and homoscedasticity were 

verified prior to each analysis. The model exploring APT was 

significant (p = .003) and is described below in Table 3. 
 

TABLE 3. PROGRAMMING APTITUDE MINDSET REGRESSION MODEL 

Construct β σ    t p 

Programming Aptitude Mindset (APT) -.249 .109 -2.225 .025 

APT*GRADE .245 .101 2.254 .027 

Early Programming Performance (GRADE) .248 .108 2.281 .026 

 Note: Adjusted R
2
 = .141; N = 73; F[3,70] = 4.985, p = .003 

 

The relationship, illustrated in Figure 3, reveals that those 

with fixed APT and low GRADE tended to practice less than 

their peers. However, students with high GRADE were not as 

strongly influenced by their APT.  

 

 
 

Fig. 3. Illustrating the influence of programming aptitude mindset and 

performance on early assignments on students' programming practice. 
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This interaction, however, was not found in the model 

exploring INTEL, shown in Table 4: 
 

TABLE 4. INTELLIGENCE MINDSET REGRESSION MODEL 

Construct β σ    t p 

Intelligence Mindset (INTEL) -.253 .114 -2.222 .030 

INTEL*GRADE .135 .107 1.194 .237 

Early Programming Performance (GRADE) .283 .113 2.490 .015 

Note: Adjusted R
2
 = .089; N = 73; F[3,70] = 3.385, p = .023 

 

The expected interaction with GRADE was not significant 

(p = .237). Nevertheless, using INTEL to predict PRACT was 

significant (p = .023). Thus, both models had utility for 

predicting PRACT. However, the comparison shown below in 

Table 5 reveals several differences: 
 

TABLE 5. MODEL SELECTION CRITERIA  

Model Adjusted R
2
 AIC PC BIC 

Programming Aptitude Mindset Model .141 -9.037 0.895 -2.166 

Intelligence Mindset Model .089 -4.791 0.948 2.081 

Note: AIC: Alkaike Information Criterion; PC: Prediction Criterion; BIC: Bayesian Information Criterion 
 

It can be seen that the regression model using the mindset 

scores for programming aptitude explained a larger proportion 

of variance (Adjusted R
2
 = .141, ΔR

2
 = .052). Furthermore, 

there was an noticeable improvement in fit (ΔAIC = 4.246, 

ΔAIC > 2 [4]). Thus, the data shows that the APT model has 

greater utility for predicting PRACT. 

D. Change in Belief for Each Mindset Over Time (RQ3) 

A series of paired t-tests examined whether students' 

mindsets had changed between the first wave of the survey 

and the second wave. The results are shown in Table 6:  
 

TABLE 6. PAIRED T-TESTS FOR CHANGES IN MINDSET 

Mindset    w=0    w=1   Δ σ Δ t p d 

Intelligence -0.15 -0.09 .059 .508 0.927 .358 n.s 

Programming Aptitude  -1.16 -0.90 .267 .856 2.475 .016 0.62 

 Note: N = 63, df = 62, w: survey wave (8 weeks between each wave), d: Cohen's d effect size 
 

There was a non-significant decrease in mean INTEL score 

(p = .358). Thus, students' INTEL remained stable across the 

eight week period. However, there was a significant increase 

in APT score (p = .016). This suggests that students’ beliefs 

towards programming aptitude had become more fixed, with 

“medium” effect (d = 0.62) [6]. In context, however, the mean 

difference (  Δ = .267) does not represent a large shift for the 

entire cohort. Only 30.2% of the respondents came to believe 

more strongly in a fixed perspective, with only 18% of cases 

changing distinctly from the growth belief.  

E. Summary of Adjustments for Multiple Hypothesis Testing 

As multiple hypotheses were explored, p-values have been 

adjusted to control for the false discovery rate (FDR = .05) 

using the Benjamini-Hotchberg Procedure [3]. Note, H7 and 

H10 are not associated with a null hypothesis significance test. 

These adjustments are shown in Table 7. 

 

TABLE 7. SUMMARY OF FINDINGS AND ADJUSTED P-VALUES 

RQ Hn Hypothesis Observation    Conclusion 

1 H1 APT ↔ INTEL  r = .248 .048 Reject Null 

 H2 κ (APT ↔ INTEL) ≠   κ = .    .075 Accept Null 

2 H3 APT → PRACT β = -.249 .048 Reject Null 

 H4 INTEL → PRACT β = -.253 .048 Reject Null 

 H5 (APT * GRADE) → PRACT β = . 45 .048 Reject Null 

 H6 (INTEL * GRADE) → PRACT β = .135 .263 Accept Null 

 H7 │AIC (APT) - AIC (INTEL) │> 2.0 ΔAIC = 4.2 -- -- 

3 H8   Δ (APT) ≠ 0   Δ = .267 .048 Reject Null 

 H9   Δ (INTEL) ≠     Δ = .059 .358 Accept Null 

 H10 │d (APT) - d (INTEL)│ >  .  Δd = 0.62 -- -- 

  Note: p : Benjamini-Hotchberg adjusted p-value. 

VIII. DISCUSSION 

The literature on self-beliefs and motivation shows that 

mindsets can influence resilience [8, 35]. Students with 

growth beliefs tend to maintain practice when they encounter 

difficulty. Those with fixed beliefs do not. Thus, it is 

important that educators inspire growth beliefs as ongoing 

practice is important for developing expertise [13, 34]. 

However, mindset may not reflect a single general construct 

focused on intelligence. This study shows some evidence that 

students may develop domain-specific beliefs in the area of 

computer programming. 

The first research question examined whether students' 

beliefs about their intelligence and their beliefs about their 

programming aptitude could be substantially different. 

Although a significant correlation was found, the classification 

schemes showed low levels of agreement. Most students with 

the fixed belief for programming aptitude had the growth 

belief for intelligence. This suggests that students can have 

markedly different mindsets across domains.  

The second research question explored the relationships 

between each mindset and programming practice behavior. 

Although the results were modest, the regression model based 

on aptitude beliefs had a closer fit to the data and explained a 

greater proportion of the variance. Furthermore, while early 

performance in programming moderated the relationship 

between practice and aptitude beliefs, this was not found in 

intelligence model. These results seems to reinforce the notion 

that students do not associate their performance in computer 

programming with their sense of intelligence and suggest that 

the mindset towards programming aptitude could have greater 

utility for predicting programming practice.  

The third research question asked whether beliefs changed 

across an eight week period of instruction. Although beliefs 

about intelligence did not change, it is a concern that nearly 

one-third of respondents came to believe more strongly in the 

fixed perspective of programming aptitude. The cause, in this 

case, is unclear. The literature suggests that many aspects of 

programming instruction [7, 26] and feedback style [25, 27] 

could have contributed to the change. However, there could be 

differences in source as well as sensitivity. Thus, factors that 
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affect domain-specific beliefs should be further explored. 

This study has several limitations, notably threats to 

external validity as students were recruited from two classes at 

a single institution and the number of students encountering 

early difficulties was low. Furthermore, the sample size 

constrained statistical power, so interaction effects could not 

be investigated. It should also be noted that the reliability of 

the mindset measure was marginally adequate, suggesting a 

need for further scale development (see [33]). 

IX. CONCLUSION AND FUTURE WORK 

This study reveals some evidence that mindset for 

programming aptitude is not only distinct from mindset about 

intelligence, but that it may also have a stronger relationship 

with programming practice. This suggests a discipline-specific 

perspective may be appropriate when extending self-theory 

research into the software engineering context. As such, 

educators should emphasize the malleability of programming 

skill directly by, for example, contextually situating growth 

messages within relevant programming materials (e.g. code 

review rubrics [7]).  Moreover, future work should examine 

measures of programming aptitude mindset and further 

investigate mindset interventions.  
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