
1

IEEE TRANSACTIONS ON EDUCATION, VOL. XX, NO. X, XXX XXXX

 

Abstract—Deliberate practice is important in many areas,

including learning to program computers. However, beliefs about

the nature of personal traits, known as mindsets, can have a

profound impact on such practice. Previous research has shown

that those with a fixed mindset believe their traits cannot change

and tend to reduce their level of practice when they encounter

difficulty. In contrast, those with the growth mindset believe their

traits are flexible and tend to maintain regular practice despite

the level of difficulty. However, focusing on mindset as a single

construct focused on intelligence may not be appropriate in the

field of computer programming. Exploring this notion, a

self-belief survey was distributed to undergraduate software

engineering students. It was revealed that beliefs about

intelligence and programming aptitude formed two distinct

constructs. Furthermore, the mindset for programming aptitude

had greater utility in predicting software development practice

and a follow-up survey showed that it became more fixed

throughout instruction. Thus, educators should consider the role

of programming-specific beliefs in the design and evaluation of

introductory courses in software engineering. Particularly, the

need to situate and contextualize the growth messages that

motivate students who experience early setbacks.

Index Terms—Self-Theories, Implicit Beliefs, Programming,

Practice, Domain-Specific, Mindsets, Dweck.

I. INTRODUCTION

ANY struggle to learn programming [18]. Introductory

courses, in particular, have a history of poor outcomes at

the tertiary level. A recent study showed that many learners

fail to grasp the fundamentals after such a course [16]. Thus, it

is important to explore how students learn successfully.

 Addressing the cognitive-affective barriers which reduce

the deliberate practice that students engage in offers one line

of enquiry [30]. This is important because maintaining an

ongoing, reflexive, and self-regulated learning process is

critical to the acquisition of expertise [13]. It has been said

that at least ten years of such practice is needed to develop

Copyright © The Authors. This is an author's original manuscript of an

article whose final and definitive form has been accepted for publication in the

journal IEEE Transactions on Education.

Michael James Scott and Gheorghita Ghinea are members of the People &

Interactivity Group within the School of Information Systems, Computing &

Mathematics at Brunel University (e-mail: michael.scott@brunel.ac.uk).

substantial proficiency in software engineering [13, 34].

Consequently, educators often situate high levels of

scaffolding and formative feedback within the introductory

programming lab [19]. Despite such efforts, however, many

beginners do not practice regularly. Often, such students claim

they experience apprehension and discomfort when they

attempt to do so [28]. These emotional responses can prompt

students to stop working on difficult assignments [22] and it

has been reported that such affective factors worsen over a

course of programming instruction [24].

Nevertheless, not all students react this way when they

encounter problems. For example, some perceive compilation

errors as a challenge to be overcome rather than as an

indication of failure [26]. Among the potential reasons for

such conflicting perspectives is the different ways in which

students reflect upon their learning [21, 22]. These differences

may correspond to students' self-beliefs [26], presenting an

opportunity for educators to nurture particular mindsets.

II. MINDSETS: ARE THEY DOMAIN-SPECIFIC?

According to the self-theories proposed by Dweck [12],

individuals hold beliefs about the nature of their personal

traits, referred to as their mindset, which can be classified into

one of two core beliefs. Those with the fixed mindset believe

their traits are an entity that cannot be changed. Conversely,

those with the growth mindset believe their traits are flexible

and can be enhanced through effort.

These beliefs have implications for the way that students

engage in self-regulated learning. This is because the learning

strategies that students apply depend on whether they believe

such strategies are necessary for learning and are effective at

addressing problems [11]. As a result, those with a fixed

mindset tend to adopt a helpless response when they encounter

difficulty. In contrast, those with a growth mindset tend to

persevere, adopting a mastery-orientated strategy [8, 35].

In order to nurture a growth mindset, educators embed

growth messages such as "the brain is like a muscle, it

develops through exercise" into their teaching practice.

However, this advice is often framed in terms of intelligence

[21, 26, 32]. Do students generalize such messages? The

human mind can be conceived in terms of multiple

intelligences [14] and self-theories have been adapted for

areas as varied as: shyness [2]; math-ability [15]; and

On the Domain-Specificity of Mindsets:

The Relationship Between Aptitude Beliefs and

Programming Practice

 Michael James Scott and Gheorghita Ghinea

M

2

IEEE TRANSACTIONS ON EDUCATION, VOL. XX, NO. X, XXX XXXX

willpower [20]. Therefore, it is conceivable that students do

not associate their programming ability with a general sense of

intelligence, but rather to a sense of programming aptitude.

Programming has been described as a discipline that

presents “radical novelties” to beginners [9]. This is because

new students often need to adapt their way of thinking to

accommodate the abstract and intangible concepts that are

applied in program creation [5, 30] as such thinking is seldom

developed prior to the first programming course [18]. Hence,

the discipline can feel distinct, potentially promoting a

separate mindset for programming aptitude.

This has implications for the design and evaluation of

teaching practice. A “saying is believing” exercise required

students to “describe a time when (they) learned something

other than programming (...) but with practice and

perseverance (they) were able to succeed” [31, p. 176].

However, this was shown to lack practical impact. Perhaps

this may be the case because students can hold a separate

mindset for programming. In such cases, reflecting on past

success in another discipline may not succeed.

Another intervention attempted a rich combination of

mindset-informed training and feedback practices [7]. This

was shown to have some success, but only for students who

also received a programming-specific crib-sheet which

contextually reinforced the growth belief. This could indicate

an advantage in applying educational practices that are

designed to change a more specific mindset, as opposed to a

general mindset for intelligence [c.f. 35]. However, only a

single measure was used in the study.

Following this line of reasoning, prior work [29] has shown

that an adapted mindset scale formed two distinct subscales:

items about programming aptitude and items about general

intelligence. However, a significant correlation was found

between scores on these subscales, raising several research

questions (RQs) about the implications of separate mindsets

for teaching practice in the software engineering context:

RQ1. Can students have a mindset for programming

aptitude that is substantially different to their

mindset for general intelligence?

RQ2. Does the mindset for programming aptitude have

more utility for predicting programming practice

compared to the mindset for general intelligence?

RQ3. Does the mindset for programming aptitude change

differently to the mindset for general intelligence

over a period of programming instruction?

III. HYPOTHESES

To explore the relative merits of modeling separate

mindsets, there is a need to establish a clear difference

between them. The first research question examines two

hypotheses: firstly, that a model with programming aptitude

mindset and intelligence mindset as two distinct, but slightly

correlated factors (H1), demonstrates good fit to observed data

[29]; secondly, for the notion of separate mindsets to have

utility for educators, the classification of each mindset (being

either fixed or growth) should not have a high level of

consistency (H2). The second research question then explores

the impact of each mindset on programming practice behavior.

It is hypothesized that both programming aptitude mindset and

mindset for intelligence (H3 and H4) are related to

programming practice behavior. Given their relation to

resilience [8, 35], each relationship will be moderated by early

performance (H5 and H6), such that those achieving high

grades will not be as strongly influenced by their mindset.

However, each will have a different level of explanatory

power on programming practice behavior (H7).

Fig. 1. The Impacts of Mindset for Programming Aptitude (APT) and

Mindset for Intelligence (INTEL) on Programming Practice Behavior

(PRACT), as moderated by Early Programming Performance (GRADE)

(Left), Alongside Change in Each Mindset Across an 8-Week Period of

Instruction (Right).

The third research question investigates change in mindset

over time. As there could be elements of programming

instruction that induce a fixed mindset [7, 26], it is

hypothesized that mindset towards programming aptitude will

become more fixed over a period of programming instruction

(H8). Mindset towards intelligence may also change (H9), but

less so than programming aptitude (H10).

IV. DATA COLLECTION

A two-wave survey was conducted in 2012-13 to examine

these hypotheses. Participants were recruited from two core

programming modules at the authors' institution. The study

was promoted via: pre-registered email; institutional email;

notices on BlackBoard Learn; and through a course-related

Facebook Group.

The questionnaires were distributed using SurveyMonkey

and were available for 11 days across the 8th and 16th week of

the semester, respectively. Participation was voluntary. In

order to identify programming assessments corresponding to

each respondent, student identification numbers were either

obfuscated and encoded into hyperlinks or reported. The

sampling frame consisted of 296 first and second year

undergraduate students on programming modules within the

authors' institution. To be eligible, students had to be at least

18 years of age and had to have submitted their first three lab

assignments, the deadlines for which were prior to the date the

survey was conducted. There were 73 students who completed

all of the items in the first wave of the survey. Thus, the initial

response rate was 24%. However, there was some attrition

between the first and second wave of the survey, with only 63

students responding to both. Thus, the attrition rate was 14%.

H1,2

H3,7

H4,7

H5 H6

H8,10

H9,10

3

IEEE TRANSACTIONS ON EDUCATION, VOL. XX, NO. X, XXX XXXX

Fig. 2. A summary of the age, gender and prior programming experience of the survey respondents.

V. PARTICIPANT CHARACTERISTICS

Participants were first and second year undergraduate

students following the sequential pathway for “Computer

Science (Software Engineering)”
1
. The descriptive statistics,

summarized in Figure 2, show that approximately 24.3% of

the respondents were female, while the average age was

years (= .48, σ = .4 , ma = 3), with 17.6% of

respondents being over the age of 23 at entry.

As the response rate was low and the early programming

scores for the sample indicated that many were per orming at

a high merit level (= 6.61, σ = 1.71, max = 9.00), there was

concern about response bias. However, performance did not

significantly differ to the cohort (= 6.35, σ = 1.58,

t[72] = 1.291, p = .201). Furthermore, the proportion of

mature (age > 3) (χ
2
 = 2.647, p = .103) and female students

(χ
2
 = 1.372, p = .241) was typical of the cohort.

Admission to the pathway required at least 300 UCAS

Points
2
 (University & College Admission System Points), with

a strong preference for STEM subjects (science, technology,

engineering, and mathematics). Prior programming experience

was not required (44.6%). However, students without a

relevant STEM qualification, or the required points, could opt

to pursue a relevant foundation course (9.6%).

In the first year, students on the pathway would attend an

“Introductory Java Programming” module in order to learn

object-orientated design and the fundamental constructs of the

Java language. This was conducted through a sequence of

laboratory-based assignments and a group project, where

students would program robots to complete short scripted

tasks. For example: maze navigation; obstacle avoidance; or

communication in Morse Code.

In the following year, students explored algorithms and data

structures as part of an “Algorithms and their Applications”

module. This involved the implementation and analysis of

classic algorithms (e.g. sorting, searching, graph traversal,

meta-heuristics) as a series of lab-based tasks. As before, this

was paired with a group-based Android development project.

1 The course description is available here: www.brunel.ac.uk/courses/undergraduate/

computer-science-software-engineering-bsc
2 To convert many international qualifications and grades to UCAS Points, refer to:

 www.ucas.com/how-it-all-works/explore-your-options/entry-requirements/tariff-tables

VI. MEASUREMENT

The questionnaire measured three latent variables: mindset

for intelligence (INTEL); mindset for programming aptitude

(APT); and programming practice behavior (PRACT).

Common factor analysis techniques were used to generate

these scores, rather than principle components analysis, to

e plore how the underlying structure o items’ shared variance

reflected the latent variables of interest (see [1] for a

discussion). Early programming performance (GRADE) was

measured using the first three assignments in each module.

A. Mindset towards Intelligence (INTEL)

To measure mindset for intelligence, items were drawn

from Dweck's mindset scale [12]. Five items were used,

including three statements that endorsed the fixed belief, such

as “my intelligence is something about me that I can't change

very much” and two statements that endorsed the growth

belie , such as “I can always substantially change how

intelligent I am”. These were presented as a 7-point Likert

Scale, ranging from strongly disagree to strongly agree. The

order in which items were displayed was randomised

alongside items measuring mindset for programming aptitude.

Composite scores were generated using a regression method

based on the factor score matrix generated by a maximum-

likelihood analysis. A high score indicated a fixed belief.

B. Mindset towards Programming Aptitude (APT)

 To measure mindset for programming aptitude, items were

also drawn from Dweck's mindset scale [12]. However. these

were adapted to the programming context. Five items were

used, including three statements endorsing the fixed belief.

For example: “I have a fixed level of programming aptitude,

and not much can be done to change it”. The remaining two

items endorsed the growth belief. For example: “I believe I am

able to achieve a high level of programming aptitude, with

enough practice”. The items were presented as a 7-point Likert

scale, with responses ranging from strongly disagree to

strongly agree. The items were presented randomly alongside

items measuring mindset for intelligence. Composite scores

were generated using a regression method based on a factor

score matrix produced by a maximum-likelihood analysis. A

high score on this scale indicates a fixed belief.

4

IEEE TRANSACTIONS ON EDUCATION, VOL. XX, NO. X, XXX XXXX

C. Regularity of Programming Practice (PRACT)

A self-report measure of programming practice was created

for this survey using a 7-point and a 4-point item. These were

presented as Guttman-type items, questioning “in a typical

week of study I find myself writing code {during the closed-

labs / at least {1-5} day(s) a week / every day}” and “in a

typical session I concentrate on programming for {up to 30

minutes / at least 30 minutes / at least one hour / at least two

hours}”. Thus, providing an indication of frequency of

practice and the typical duration of each practice session.

Responses to these items were parceled into a single

composite score using principal axis factoring. Note, as a

retrospective self-report measure, this should not be

interpreted as actual practice. Caution should be exercised due

to the potential for self-report biases [10].

D. Early Programming Performance (GRADE)

As the core programming modules used the same

assessment structure, early programming performance was

measured using existing assessment data. Assignments were

assessed as code reviews by a team of Ph.D. students covering

the modules; typically, with good consistency (ICC = 0.73, 6

submissions). Grades reflected the functional coherence of

solutions, the presence of common pitfalls, and a judgment on

quality according to a rubric. They were recorded as 1 (pass),

2 (merit), and 3 (distinction). The results of the first three

assessments were added together to form a composite score.

VII. DATA ANALYSIS

The data was analyzed using PASW 18.0.3 and AMOS

21.0.0 for Windows. All cases were included. Cases with

missing data were removed list-wise. All reported p-values are

two-tailed with significance determined at the .05 level.

A. Replication of the Two-Mindsets Factor Structure (RQ1)

As with the previous study [29], a maximum-likelihood

factor analysis showed that a two factor model had greater fit

(χ
2
 = 43.094, df = 34, p = .136) than a single factor model

(χ
2
 = 69.619, df = 35, p = .000). Furthermore, the items used to

measure mindset towards intelligence (α= .73) and mindset

towards programming aptitude (α = .61) demonstrated

adequate reliability. Fit indices are summarized in Table 1:

TABLE 1. FIT INDICES & CRITERIA FOR TWO-FACTOR MODEL

Fit Indices 1-Factor Model 2-Factor Model Adequate Fit Criteria [18]

SRMR .108 .078 < .08

CFI .728 .928 > .90

RMSEA .117 .061 < .08

Bollen-Stein p .015 .313 > .05

Note: SRMR: Standardized Root Mean Square Residual; CFI: Comparative Fit Index; RMSEA: Root Mean
Square Error of Approximation; N = 73

B. Consistency Between Different Mindsets (RQ1)

Participants were classified using a two-step clustering

procedure that was applied separately to APT and INTEL.

Each showed the expected two-cluster solutions, based on

Log-likelihood distance and Bayesian Information Criterion.

The average silhouette coefficient was used to evaluate the

clustering solutions. This yielded values greater than 0.7 for

both analyses, indicating that the solutions were “good”. The

results are shown in Table 2 below:

TABLE 2. MINDSET CLASSIFICATION FOR INDIVIDUAL STUDENTS

Fixed

Intelligence

Growth

Intelligence
κ p

Fixed Programming

Aptitude
10 13

Growth Programming

Aptitude
11 39 .220 .060

Note: κ: Cohen's kappa; N = 73; Agreement = 67.1%

The correlation between factor scores was significant

(r = .248, p = .034). However, the level of agreement between

each classification scheme, based on the kappa statistic,

indicated only “fair agreement” (p = .060) [23]. It can be seen

that 23 students were classified as fixed APT (31.5%), while

21 students were fixed INTEL (28.7%). Inconsistency

occurred in 24 cases (32.9%), where students held different

beliefs for the two domains. This was most prominent for

those with fixed APT, where 13 of the 23 cases maintained

growth INTEL (56.5%). However, 11 of the 50 cases with a

growth APT also had inconsistent beliefs (28.8%).

C. Impact of Each Mindset on Practice Behavior (RQ2)

Two linear regression analyses compared the independent

impact of APT and INTEL on PRACT. Assumptions of

residual normality, independence, and homoscedasticity were

verified prior to each analysis. The model exploring APT was

significant (p = .003) and is described below in Table 3.

TABLE 3. PROGRAMMING APTITUDE MINDSET REGRESSION MODEL

Construct β σ t p

Programming Aptitude Mindset (APT) -.249 .109 -2.225 .025

APT*GRADE .245 .101 2.254 .027

Early Programming Performance (GRADE) .248 .108 2.281 .026

 Note: Adjusted R
2
 = .141; N = 73; F[3,70] = 4.985, p = .003

The relationship, illustrated in Figure 3, reveals that those

with fixed APT and low GRADE tended to practice less than

their peers. However, students with high GRADE were not as

strongly influenced by their APT.

Fig. 3. Illustrating the influence of programming aptitude mindset and

performance on early assignments on students' programming practice.

5

IEEE TRANSACTIONS ON EDUCATION, VOL. XX, NO. X, XXX XXXX

This interaction, however, was not found in the model

exploring INTEL, shown in Table 4:

TABLE 4. INTELLIGENCE MINDSET REGRESSION MODEL

Construct β σ t p

Intelligence Mindset (INTEL) -.253 .114 -2.222 .030

INTEL*GRADE .135 .107 1.194 .237

Early Programming Performance (GRADE) .283 .113 2.490 .015

Note: Adjusted R
2
 = .089; N = 73; F[3,70] = 3.385, p = .023

The expected interaction with GRADE was not significant

(p = .237). Nevertheless, using INTEL to predict PRACT was

significant (p = .023). Thus, both models had utility for

predicting PRACT. However, the comparison shown below in

Table 5 reveals several differences:

TABLE 5. MODEL SELECTION CRITERIA

Model Adjusted R
2
 AIC PC BIC

Programming Aptitude Mindset Model .141 -9.037 0.895 -2.166

Intelligence Mindset Model .089 -4.791 0.948 2.081

Note: AIC: Alkaike Information Criterion; PC: Prediction Criterion; BIC: Bayesian Information Criterion

It can be seen that the regression model using the mindset

scores for programming aptitude explained a larger proportion

of variance (Adjusted R
2
 = .141, ΔR

2
 = .052). Furthermore,

there was an noticeable improvement in fit (ΔAIC = 4.246,

ΔAIC > 2 [4]). Thus, the data shows that the APT model has

greater utility for predicting PRACT.

D. Change in Belief for Each Mindset Over Time (RQ3)

A series of paired t-tests examined whether students'

mindsets had changed between the first wave of the survey

and the second wave. The results are shown in Table 6:

TABLE 6. PAIRED T-TESTS FOR CHANGES IN MINDSET

Mindset w=0 w=1 Δ σ Δ t p d

Intelligence -0.15 -0.09 .059 .508 0.927 .358 n.s

Programming Aptitude -1.16 -0.90 .267 .856 2.475 .016 0.62

 Note: N = 63, df = 62, w: survey wave (8 weeks between each wave), d: Cohen's d effect size

There was a non-significant decrease in mean INTEL score

(p = .358). Thus, students' INTEL remained stable across the

eight week period. However, there was a significant increase

in APT score (p = .016). This suggests that students’ beliefs

towards programming aptitude had become more fixed, with

“medium” effect (d = 0.62) [6]. In context, however, the mean

difference (Δ = .267) does not represent a large shift for the

entire cohort. Only 30.2% of the respondents came to believe

more strongly in a fixed perspective, with only 18% of cases

changing distinctly from the growth belief.

E. Summary of Adjustments for Multiple Hypothesis Testing

As multiple hypotheses were explored, p-values have been

adjusted to control for the false discovery rate (FDR = .05)

using the Benjamini-Hotchberg Procedure [3]. Note, H7 and

H10 are not associated with a null hypothesis significance test.

These adjustments are shown in Table 7.

TABLE 7. SUMMARY OF FINDINGS AND ADJUSTED P-VALUES

RQ Hn Hypothesis Observation Conclusion

1 H1 APT ↔ INTEL r = .248 .048 Reject Null

 H2 κ (APT ↔ INTEL) ≠ κ = . .075 Accept Null

2 H3 APT → PRACT β = -.249 .048 Reject Null

 H4 INTEL → PRACT β = -.253 .048 Reject Null

 H5 (APT * GRADE) → PRACT β = . 45 .048 Reject Null

 H6 (INTEL * GRADE) → PRACT β = .135 .263 Accept Null

 H7 │AIC (APT) - AIC (INTEL) │> 2.0 ΔAIC = 4.2 -- --

3 H8 Δ (APT) ≠ 0 Δ = .267 .048 Reject Null

 H9 Δ (INTEL) ≠ Δ = .059 .358 Accept Null

 H10 │d (APT) - d (INTEL)│ > . Δd = 0.62 -- --

 Note: p : Benjamini-Hotchberg adjusted p-value.

VIII. DISCUSSION

The literature on self-beliefs and motivation shows that

mindsets can influence resilience [8, 35]. Students with

growth beliefs tend to maintain practice when they encounter

difficulty. Those with fixed beliefs do not. Thus, it is

important that educators inspire growth beliefs as ongoing

practice is important for developing expertise [13, 34].

However, mindset may not reflect a single general construct

focused on intelligence. This study shows some evidence that

students may develop domain-specific beliefs in the area of

computer programming.

The first research question examined whether students'

beliefs about their intelligence and their beliefs about their

programming aptitude could be substantially different.

Although a significant correlation was found, the classification

schemes showed low levels of agreement. Most students with

the fixed belief for programming aptitude had the growth

belief for intelligence. This suggests that students can have

markedly different mindsets across domains.

The second research question explored the relationships

between each mindset and programming practice behavior.

Although the results were modest, the regression model based

on aptitude beliefs had a closer fit to the data and explained a

greater proportion of the variance. Furthermore, while early

performance in programming moderated the relationship

between practice and aptitude beliefs, this was not found in

intelligence model. These results seems to reinforce the notion

that students do not associate their performance in computer

programming with their sense of intelligence and suggest that

the mindset towards programming aptitude could have greater

utility for predicting programming practice.

The third research question asked whether beliefs changed

across an eight week period of instruction. Although beliefs

about intelligence did not change, it is a concern that nearly

one-third of respondents came to believe more strongly in the

fixed perspective of programming aptitude. The cause, in this

case, is unclear. The literature suggests that many aspects of

programming instruction [7, 26] and feedback style [25, 27]

could have contributed to the change. However, there could be

differences in source as well as sensitivity. Thus, factors that

6

IEEE TRANSACTIONS ON EDUCATION, VOL. XX, NO. X, XXX XXXX

affect domain-specific beliefs should be further explored.

This study has several limitations, notably threats to

external validity as students were recruited from two classes at

a single institution and the number of students encountering

early difficulties was low. Furthermore, the sample size

constrained statistical power, so interaction effects could not

be investigated. It should also be noted that the reliability of

the mindset measure was marginally adequate, suggesting a

need for further scale development (see [33]).

IX. CONCLUSION AND FUTURE WORK

This study reveals some evidence that mindset for

programming aptitude is not only distinct from mindset about

intelligence, but that it may also have a stronger relationship

with programming practice. This suggests a discipline-specific

perspective may be appropriate when extending self-theory

research into the software engineering context. As such,

educators should emphasize the malleability of programming

skill directly by, for example, contextually situating growth

messages within relevant programming materials (e.g. code

review rubrics [7]). Moreover, future work should examine

measures of programming aptitude mindset and further

investigate mindset interventions.

REFERENCES

[1] Beavers, A.S. et al. “Practical Considerations or Using E ploratory

Factor Analysis in Education Research”, Practical Assessment, Research

& Evaluation, vol. 18, no. 6, pp. 1-13, 2013.

[2] Beer, J.S. "Implicit Self-Theories of Shyness", J. Personality & Social

Psychology, vol. 83, no. 4, pp. 1009-1024, 2002.

[3] Benjamini, Y. and Hochberg, Y. “Controlling the False Discovery Rate:

A Practical and Power ul Approach to Multiple Testing”, J. Royal

Statistical Society, ser. B, vol. 57, no. 1, pp. 289-300, 1995.

[4] Burnham, K. P., and D. R. Anderson. Model Selection and Multimodel

Inference: A Practical Information-Theoretic Approach, 2nd Ed.

Springer-Verlag, New York, 2002.

[5] Caspersen, M.E. and Bennedset, J. “Instructional Design o a

Programming Course - A Learning Theoretic Approach ”. In Proc. 3rd

International Workshop on Computing Education Research, Atlanta,

GA, 2007, pp. 111-122.

[6] Cohen, J. "A Power Primer", Psychological Bulletin, vol. 112, no. 1,

pp. 155-159, 1992.

[7] Cutts, Q., Cutts, E., Draper, S., O'Donnell, P. and Saffrey, P.

"Manipulating Mindset to Positively Influence Introductory

Programming Performance". In Proc. 41st ACM Tech. Symp. on

Computer Science Education, Milwaukee, WI, 2010, pp. 431-435.

[8] Diener, C.I. and Dweck, C.S. "An Analysis of Learned Helplessness:

Continuous Changes in Performance, Strategy and Achievement

Cognitions Following Failure", J. Personality & Social Psychology,

vol. 36, no. 5, pp. 451-462, 1978.

[9] Dijkstra, E.W. "A Debate on Teaching Computing Science: On the

Cruelty of Really Teaching Computing Science", Communications of

the ACM, vol. 32, no. 12, pp. 1398-1404, 1989.

[10] Donaldson, S.I. and Grant-Vallone, E.J. "Understanding Self-Report

Bias in Organizational Behavior Research", J. Business & Psychology,

vol. 17, no. 2, pp. 245-260, 2002.

[11] Dweck, C.S. and Master, A. “Sel -Theories Motivate Self-Regulated

Learning” in Motivation & Self-Regulated Learning: Theory, Research

& Applications, D.H. Schunk and B. Zimmerman, Eds. Lawrence

Erlabaum, New York, NY, 2008, pp. 31-51.

[12] Dweck, C.S. Self-Theories: Their Role in Motivation, Personality, and

Development. Psychology Press, Philadelphia, PA, 1999.

[13] Ericsson, K.A., Krampe, R. and Tesch-Romer, C. "The Role of

Deliberate Practice in the Acquisition of Expert Performance",

Psychological Review, vol. 100, pp. 393-394, 1993.

[14] Gardner, H.E. Multiple Intelligences: New Horizons in Theory and

Practice. Basic Books, New York, NY, USA, 2006.

[15] Good, C., Rattan, A. and Dweck, C.S. "Why Do Women Opt Out? Sense

of Belonging and Women's Representation in Mathematics". J.

Personality & Social Psychology, vol. 102, no. 4, pp. 700-717, 2012.

[16] Guzdial, M. "From Science to Engineering", Communications of the

ACM, vol. 54, no. 2, pp. 37-39, 2011.

[17] Hair, J., Black, B., Babin, B. and Anderson, R. Multivariate Data

Analysis, 7th ed. Psychology Press, NJ, USA, 2009.

[18] Jenkins, T. "On the Difficulty of Learning to Program" [Online]. In

Proc. 3rd Ann. Conf. of the HEA Learning and Teaching Support

Network: Centre for Information and Computer Sciences,

Loughborough, UK, 2002. Available: http://goo.gl/FZsib.

[19] Jenkins, T. "Teaching Programming - A Journey from Teacher to

Motivator" [Online]. In Proc. 2nd Ann. Conf. of the HEA Learning and

Teaching Support Network: Centre for Information and Computer

Sciences, London, UK, 2001. Available: http://goo.gl/jZH3p.

[20] Job, V., Dweck, C.S. and Walton, G.M. "Ego Depletion - Is It All In

Your Head? Implicit Theories About Willpower Affect Self-

Regulation", Psychological Sci., vol. 21, no. 11, pp. 1686-1693, 2010.

[21] Kinnunen, P. and Beth, S. “My Program is OK – Am I? Computing

Freshman’s E perience o Doing Programming Assignments”,

Computer Science Education, vol. 22, no. 1, pp. 1 – 28, 2012.

[22] Kinnunen, P. and Simon, B. "Experiencing Programming Assignments

in CS1: The Emotional Toll". In Proc. 6th Int. Workshop on Computing

Education Research, Aarhus, Denmark, 2010, pp. 77-86.

[23] Landis, J. and Koch G. “The Measurement o Observer Agreement for

Categorical Data”, Biometrics, vol. 33, no. 1, pp. 159-174, 1977.

[24] McKinney, D. and Denton, L.F. "Houston, We have a Problem: There's

a Leak in the CS1 Affective Oxygen Tank", ACM SIGCSE Bulletin,

vol. 36, no. 1, pp. 236-239, 2004.

[25] Mueller, C.M. and Dweck, C.S. "Praise for Intelligence Can Undermine

Children's Performance", J. Personality & Social Psychology, vol. 75,

no. 1, pp. 33-52, 1998.

[26] Murphy, L. and Thomas, L. "Dangers of a Fixed Mindset: Implications

of Self-Theories Research for Computer Science Education", ACM

SIGCSE Bulletin, vol. 40, no. 3, pp. 271-275, 2008.

[27] Rattan, A., Good, C. and Dweck, C.S. "It's Okay - Not Everyone Can Be

Good at Math": Instructors with an Entity Theory Comfort (and

Demotivate) Students", J. Experimental Social Psychology, vol. 48,

no. 3, pp. 731-737, 2012.

[28] Rogerson, C. and Scott, E. "The Fear Factor: How it Affects Students

Learning to Program in a Tertiary Environment", J. Information

Technology Education, vol. 9, no. 1, pp. 147-171, 2010.

[29] Scott, M.J. and Ghinea, G. "Implicit Theories of Programming Aptitude

as a Barrier to Learning to Code: Are They Distinct from Intelligence?".

In Proc. 18th Ann. ACM Conf. on Innovation and Technology in

Computer Science Education, Kent, UK, 2013.

[30] Scott, M.J. and Ghinea, G. "Educating Programmers: A Reflection on

Barriers to Deliberate Practice". In Proc. 2nd HEA Conf. on Learning

and Teaching in STEM Disciplines, Birmingham, UK, 2013, pp. 028P.

[31] Simon, B. et al. "Saying Isn't Necessarily Believing: Influencing Self-

Theories in Computing". In Proc. 4th Int. Workshop on Computing

Education Research, Sydney, Australia, 2008, pp. 173-184.

[32] Stump, G., Husman, J., Chung, W.-T. and Done, A. "Student Beliefs

about Intelligence: Relationship to Learning". In Proc. IEEE Frontiers

in Education Conf., San Antonio, TX, 2009, pp. T4F-1.

[33] Tew, A.E. and Dorn, B. "The Case for Validated Tools in Computing

Education Research", Computer, vol. 46, no. 9, pp. 60-66.

[34] Winslow, L.E. "Programming Pedagogy - A Psychological Overview",

ACM SIGCSE Bulletin, vol. 28, no. 3, pp. 17-22, 1996.

[35] Yeager, D. and Dweck, C.S. "Mindsets That Promote Resilience: When

Students Believe That Personal Characteristics Can Be Developed",

Educational Psychologist, vol. 47, no. 4, pp. 302-314, 2012.

